Self-organized swarm robot for target search and trapping inspired by bacterial chemotaxis

نویسندگان

  • Bin Yang
  • Yongsheng Ding
  • Yaochu Jin
  • Kuangrong Hao
چکیده

Target search and trapping using self-organized swarm robots have received increasing attention in recent years but control design of these systems remains a challenge. In this paper, we propose a decentralized control algorithm of swarm robot for target search and trapping inspired by bacteria chemotaxis. First, a local coordinate system is established according to the initial positions of the robots in the target area. Then the target area is divided into Voronoi cells. After the initialization, swarm robots start performing target search and trapping missions driven by the proposed bacteria chemotaxis algorithm under the guidance of the gradient information defined by the target. Simulation results demonstrate the effectiveness of the algorithm and its robustness to unexpected robot failure. Compared with other commonly used methods for distributed control of swarm robots, our simulation results indicate that the bacteria chemotaxis algorithm exhibits less vulnerability to local optimum, and high computational efficiency. © 2014 xxxxxxxx. Hosting by Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Adaptation in Multi-robot Search Using Particle Swarm Optimization

We present an adaptive strategy for a group of robots engaged in the localization of multiple targets. The robotic search algorithm is inspired by chemotaxis behavior in bacteria, and the algorithmic parameters are updated using a distributed implementation of the Particle Swarm Optimization technique. We explore the efficacy of the adaptation, the impact of using local fitness measurements to ...

متن کامل

Improving Particle Swarm Optimization by hybridization of stochastic search heuristics and Self-Organized Criticality

The objective of this thesis is to investigate how to improve Particle Swarm Optimization by hybridization of stochastic search heuristics and by a Self-Organized Criticality extension. The thesis will describe two hybrid models extending Particle Swarm Optimization with two aspects from Evolutionary Algorithms, recombination via breeding and gene flow restriction via subpopulations. A further ...

متن کامل

Designing an Optimal Stable Algorithm for Robot Swarm Motion toward a Target

In this paper, an optimal stable algorithm is presented for members of a robots swarm moving toward a target. Equations of motion of the swarm are based on Lagrangian energy equations. Regarding of similar research On the design of swarm motion algorithm, an equation of motion considered constraints to guarantee no collision between the members and the members and obstacles along the motion pat...

متن کامل

Particle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint

This paper focuses on parameter identification of a target tracker robot possessing flexible joints using particle swarm optimization (PSO) algorithm. Since, belt and pulley mechanisms are known as flexible joints in robotic systems, their elastic behavior affecting a tracker robot is investigated in this work. First, dynamic equations governing the robot behavior are extracted taking into acco...

متن کامل

Collective robotic search using hybrid techniques: Fuzzy logic and swarm intelligence inspired by nature

This paper presents two new strategies for navigation of a swarm of robots for target/mission focused applications including landmine detection and firefighting. The first method presents an embedded fuzzy logic approach in the particle swarm optimization (PSO) algorithm robots and the second method presents a swarm of fuzzy logic controllers, one on each robot. The framework of both strategies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Robotics and Autonomous Systems

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2015